
Stability Analysis of a Neural Network

1 Introduction

Object detection in the context of image processing refers to the task of drawing boxes around
objects in an image. An example is shown in Figure 1. The different type objects, or classes, can
anythin such as {person,cat,dog,. . .}. In this paper we only consider object detection for a
single class, {person}

Figure 1. Object detection in image processing
refers to the task of drawing boxes around differ-
ent objects in an image. In this example, the per-
son riding a horse is detected as person. The
term bounding-box refers to the red box outlining
the object of interest, which is person here.

Since the recent success of using deep learing mod-
els for tasks such as object detection, companies,
media outlets, and academic conferences have been
referring to two major phenomena: (1) artificial in-
telligence (2) autonomous machines. This purpose
of this paper is to address these phenomena. First,
we argue that image processing is only distantly re-
lated to artificial intelligence. Second, we identify
important issues limiting the application of computer
vision to autonomous machines in commericial set-
tings. The paper addresses these issues primarily by
providing a perspective on the goal of object detec-
tion for the person class.

2 The
Goal of Object Detection for person

The goal of image processing: to enable image data
to be used as a reliable sensor, interpreting at least as much information from an image as humans do.
There are many different perspectives for this task such as manifold learning classification image
generation instance segmentation key-point detection and more This section provides a perspective
on the goal of object detection of person.

2.1 Image Processing as Bits

Figure 2 shows two different representations of an image and its annotation for object detection of
the person class. Figure 2(a) is the common way to view an image and groundtruth. The left image
of Figure 2(a) shows a person riding a horse. The right image of Figure 2(a) is the annotation
corresponding annotation, where white indicates the presence of person and black indicates there
is not person.

Figure 2(b) shows images (column I) and annotations (column A) as binary strings where each row in
the table is a different (image, annotation) pair. An color image of size 600×400 pixels is a binary
number of length 28×600×400×3, denoted I . For object detection, the annotation can be represented
as another image with size 600 × 400. The length of the annotation’s binary representation is
2×600×400×k elements for k classes, denoted A. The number of elements in the table, denoted M ,
is at at least the number of images 28×600×400×3, M ≥ I . In other words, every image is assigned
at least one annotation. This is due to the ambiguity of an annotation; one image can have multiple,
approximately correct annotations. This concept is illustrated in Figure 3.

Preprint. Work in progress.



(a) (b)
Figure 2. This figure emphasizes the relationship of an image and annotation as a series of binary numbers.
Figure (a) illustrates a truth table for mapping an image to an annotation. The binary string on the left, an image,
is mapped to a corresponding the binary string on the right, an annotation. The length of a color image size
600× 400 in binary numbers is 28×600×400×3, denoted I in Figure (a). The length of an annotation for object
detection is 2600×400×k for k classes, denoted A in Figure (a). In this case, there is only one class (person),
so k = 1. The number of elements in the table is denoted M in Figure (a), and M is at least I entries long.
Figure (b) shows the common representation of an image and annotation.

Before we go further, lets take an aside to better understand how big 28×600×400×3 actually is. Let’s
first convert this to a base 10 number using the change of base formula where x = 8×600×400×3:
log 2x = log 10y . Then y = x

log2 ≈ .3 ∗ x > 600 × 400. So we have 28×600×400×3 > 10600×400.
According to some sources, the estimated total number of atoms in the observable universe is ap-
proximately 1080. So the number of image and annotation pairs is *much* greater than the number
of atoms. In fact,

(
10600×400

)1/2 ≈ 10490 >> 1080. There are a lot of image and annotation pairs.

By explicitly viewing the information as binary strings, as in Figure 2(b), this shows how image
processing could theoretically be solved with a look-up table. The lookup table also (hopefully)
provides a more intuitive understanding of the role machine learning has in image processing. Since
the size of the table is too big, machine learning essentially is a “short-cut” for the actual lookup
table. The goal of image processing is to create this “short-cut”. To be more precise, lets rename the
“short-cut” to “function” and label the function that maps each image to each annotation, f .

2.2 Multiple Annotations Per Image

The previous analysis assumes each image is assigned one correct annotation. Clearly, this is not
correct. Figure 3 shows how slight changed to the annotation can still be interpreted as an equally
the correct annotation. Therefore, each image can be assigned more than one annotation image. The
impact on the previous analysis implies the “lookup table” just returns a vector of equally correct
annotations. We can consider the original lookup table as a special case where the annotation image
is the arithmetic average of all equally correct annotations.

Furthermore, notice how much of the red box covers pixels that clearly do not belong to person.
This means the annotation method itself, drawing boxes around an object of interest, has some inher-
ent error as well. This error we will refer to as the annotation error bound. As an example, consider
three types of annotation classes: (1) squares, (2) rectangles, (3) pixel-wise class assignment. The
first class, squares, has a larger annotation error bound than the second class, rectangles. And the
second class, rectangles, has a higher annotation error bound than the third class, pixel-wise class
assignment. Also note as the annotation error bound decreases, the complexity of the annotation
increases.

2.3 Not AI

Artificial Intelligence is defined by webster as “the capability of a machine to imitate intelligent
human behavior”. Maybe some consider the task of object detection for person to be “intelli-
gent human behavior”, but I think not. The capability of drawing boxes around people does not
seem particularly human. Therefore, object detection for person, but instead it is to construct the
aforementioned “short-cut” function.



Figure 3. Small changes to the original bounding box create equally accurate bounding box annotations.

3 Constructing The “Short-cut”, f

3.1 Verifying f

Now that we understand the goal of object detection is to construction a “short-cut” function, f , in
lieu of our lookup table, we have some questions:

• How do we know if f is correct? or even “good”?

– Even if we could store all the groundth truth to verify if a given f is correct, we
don’t have enough time for exhaustive comparison. If each comparison took 10−6

seconds, we still need more than 10600×400−6 seconds For comparison, the universe
is estimated to be about 13.7 billion years old or about 1017 seconds.

– But what about “good”? Here, “good” means f is approximately correct, a purposely
vague term. Now “good” implies some error is acceptable. But we still end up in the
same situation as above. This is where “PAC” learnability becomes useful.

Clearly, the initial answer seems to be “we can’t verify f”. This is a huge issue. For any autonomous
machine, incorrecly interpreting sensor data can be fatal. Verifying that f is correct is (or at least
should to be) required. So how do we solve this problem?

3.2 Prior Knowledge

Insert the keyword of machine learning: prior knowledge. So what if we constrained our f so
that we didn’t need to explicitly check all the images? What if we defined some properties on our
function f (the short-cut for the lookup table in Figure 2(b)) so that if we knew the answer to a
few of the (image, annotation) pairs we knew the answer to all of them? What properties would
we want? How would this impact our performance? These assumptions about f is what people
in machine learning refer to as prior knowledge; it is knowledge about f we use to contrain our
function and control f ’s complexity, which in turn reduces the number of images we need to verify.
These concepts are rooted in PAC (probably approximately correct) Learnability. The simpler we
construct f , the fewer images we need to verify to have an approximately correct estimate of the
actual error. The more complex we construct f , the more images we must verify.

An aside: Note what we wanted is slightly different from what was just stated. The previous para-
graph outlines two different topics: knowing the remaining output values given some subset of
image v.s. our model being probably approximately correct (or knowing, approximately, the total
error with a specified probability). Below some examples highlight what PAC Learnability provides
v.s. what we originally wanted.

One silly example is the constant function, f(x) = c. In other words, every image is mapped to
the same annotation. Sure, now we only have 1 annotation to check, but we know from our prior
knowldege that f ’s correctness is terrible. Another silly example function is f(x) = g(x1), where g
is a function of only the first pixel x1. Now our function yields 8 different annotations (for uint8
precision), but again, we know from our prior knowldege that f ’s correctness is terrible.

In contrast to the above examples of controlling for f , we want to know other outputs of f given
some contraints on the function. A more useful property would be smoothness of f . This means that
every small change to the input of f yields a proportionately small change to the output of f .



Therefore, if we know that f


